If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+64t+21=0
a = 16; b = 64; c = +21;
Δ = b2-4ac
Δ = 642-4·16·21
Δ = 2752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2752}=\sqrt{64*43}=\sqrt{64}*\sqrt{43}=8\sqrt{43}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{43}}{2*16}=\frac{-64-8\sqrt{43}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{43}}{2*16}=\frac{-64+8\sqrt{43}}{32} $
| n/6+9=11 | | 0=-2.3(a+9)+17 | | 90=3(-8k+6) | | -132=-6(5p-8)-6p | | 9x-77=3x+61 | | 4a+7(6a+5)=81 | | -41-4x=-8x+43 | | Y=x26 | | 3x-2(4x+5)x=+2 | | x+(x-7)+2(x-7)=67 | | 2x-8=-6x= | | 10x+15x5x= | | -105-x=129-10x | | 2=(-1/4)x+5 | | 36+3x=12 | | 7w+8=-6 | | -3(3w-4)=-20 | | n÷8=71 | | 20+1.25n=2.5n | | 5/6*n-3=5/8*n+7 | | (1/2)x+4=10 | | 500x+200x=23200 | | 5x+6x+7x=3x-9 | | -1/2x+4=10 | | 500x+200x=5000 | | X+2+3x+4=90 | | k/12=k | | 0.5x^2-5x-10.5=0 | | 4x+10=15x | | 2(x+0.5)+9.1=19.1 | | x^2-7x+41=6x+5 | | 4x2+16x=209 |